

WJEC Chemistry A-Level

PI2.2: Chemistry of the *d*-block Transition Metals

Detailed Notes English Specification

This work by **PMT Education** is licensed under CC BY-NC-ND 4.0

Transition Metal Properties

The transition metals are elements in the **d-block** of the periodic table with a **partially filled d-orbital** of electrons. They lose electrons to form positive ions with the s-orbital electrons being removed first.

All transition metals have **similar physical properties** including atomic radius, high densities and high melting and boiling points. They all also have special **chemical properties**:

- They form complexes
- They form coloured ions
- Variable oxidation states
- Good catalysts

Variable Oxidation States

A key chemical property of the d-block transition metals is that they can exist in **variable oxidation states**. Elements such as **vanadium**, **manganese**, **chromium** and **iron** all show variable oxidation states because the **energy levels** of the **4s** and **3d** sublevels are very close to one another. This means that different numbers of electrons can be gained or lost using **similar amounts of energy**.

Generally, the **oxidation state** of the metal ion formed depends on the **energetics** of the reaction.

Iron is a transition metal with variable oxidation states. Fe²⁺ and Fe³⁺ are the main ions it commonly forms but Fe $^{6+}$ can also be produced as part of ferrate(VI) ions, FeO $_4^2$.

Most Stable Oxidation States

These different oxidation states can also produce different coloured aqueous solutions:

Complexes

Complexes form from transition metals, consisting of a central metal ion or atom surrounded by coordinately bonded ligands.

Example:

They can also be represented in formulas using square brackets.

Example:

 $[Co(H₂O)₆]^{2+}$

Ligands

Ligands are **molecules**, **atoms** or **ions** which donates a **pair of electrons** to a central transition metal ion to form a **coordinate bond**.

Common ligands include:

- Cl-
- \bullet H₂O
- \bullet NH₃

Coordination Number

The coordination number is equal to the **number of coordinate bonds** formed around the central metal ion.

Common coordination numbers are **6** and **4**. For **small ligands**, like **NH³** or **H2O**, the coordination number is 6. However, for **larger ligands** like **Cl-** , only 4 can fit around the central metal ion so the coordination number is 4.

Some **silver complexes** have a coordination number of 2 as they only form **2 coordinate bonds**. This gives the complex a **linear** shape:

$$
[NH_3\text{-}Ag\text{-}NH_3]^+
$$

Octahedral Complexes

Transition metal complexes with H₂O and NH₃ ligands commonly form **octahedral complexes** with a **bond angle of 90^o** .

Example:

The ligands don't all have to be the same, but they must be of a **similar size** to maintain the octahedral shape.

OOOO PMTEducation

 \bullet www.pmt.education

Tetrahedral Complexes

When complexes form with **larger ligands** such as **Cl-** , they form **tetrahedral complexes** with a bond angle of **109.5^o** .

Example:

Coloured Compounds

Transition metal ions can be identified by their **colour**, which depends on the **coordination number** of the complex, **type of ligand** bonded to the ion and the **oxidation state**.

Observing colour

Colour arises because of how substances **absorb** and **reflect** light. When **white light shines** on a substance, some of the **wavelengths of light are absorbed** but the remaining wavelengths are **reflected** and **transmitted** to the human eye. These **reflected wavelengths** correspond to a specific colour which is then **observed** by the human eye.

Electrons in the **d-orbital** exist in a series of **energy states**. When they are given energy, they move from **ground state** (n=1) to a higher energy state called an **'excited state'**.

The **change in energy** (∆E) between these states corresponds to a **wavelength** and **frequency** of light which can be calculated:

(υ = frequency in hertz) (λ = wavelength in meters) (h = Planck's constant, 6.63x10⁻³⁴)

When the **ligands** form a **coordinate bond** with the transition metal ion, there is **repulsion** from the **ligands' electrons** and the electrons in the **d orbitals** of the metal ion. This **increases** the **energy** of the d orbitals, but due to the **spatial arrangement** of the d orbitals, the energies are not all raised by the same amount. This **splits** the orbitals into groups.

Different ligands on the metal complex lead to **different splittings** of the d orbitals, which is why the different complexes display **different colours**.

Colours of Octahedral Compounds

[Cu(H2O)⁶] 2+ - When present, these complex ions produce a **pale blue solution**.

[Cu(NH³)4 (H2O)²] 2+ - When present, these complex ions produce a **deep blue solution**.

[Co(H2O)⁶] 2+ - When present, these complex ions produce a **pink solution**.

These compounds can all undergo substitution reactions with **chloride ions** to produce **tetrahedral complexes.** A change of colour also will occur.

[CuCl⁴] 2- - When present, these complex ions produce an **olive green solution**.

[CoCl⁴] 2- - When present, these complex ions produce a **deep blue solution**.

Ligand Substitution Reactions

One ligand can be swapped for another ligand in a **ligand exchange** or **substitution** reaction. The ligands **NH³** and **H2O** are **similar in size** and are both **uncharged**. This means they can be exchanged **without a change in coordination number** via a ligand substitution reaction.

Example: In this reaction the solution **changes colour** from **pink** to a **yellow straw colour**.

$$
[Co(H_2O)_6]^{2+} + 6NH_3 \longrightarrow [Co(NH_3)_6]^{2+} + 6H_2O
$$

With $\mathbf{copper\ complexes}$ and \mathbf{NH}_3 in \mathbf{excess} , this substitution is incomplete and the complex formed has a **combination of water** and **ammonia ligands**.

Example: In this reaction the solution **changes colour** from **pale blue** to **deep blue**.

$$
[Cu(H_2O)_6]^{2+} + 4NH_3 \longrightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 4H_2O
$$

The CI⁻ ligand is much larger than the NH₃ and H₂O ligands meaning substitution with this ligand results in a **change in coordination number** for that complex. These substitution reactions take place when **concentrated HCl** is reacted with the metal complex.

Example: The solution **changes colour** from **pale blue** to **yellow**.

$$
[Cu(H_2O)_6]^{2+} + 4Cl^-\ \longrightarrow [CuCl_4]^{2-} + 6H_2O
$$

Example: The solution **changes colour** from **pink** to **blue**.

$$
[Co(H_2O)_6]^{2+} + 4Cl^- \longrightarrow [CoCl_4]^{2-} + 6H_2O
$$

Complexes with just Cl- ligands always have a **coordination number of four**, producing a **tetrahedral** shaped complex.

Transition Metals as Catalysts

Many transition metals and their compounds have good **catalytic properties**. A catalyst is a substance that **speeds up the rate of a reaction** without being used up in the reaction. It provides an alternative reaction pathway with a **lower activation energy**. Catalysts don't affect the position of equilibrium but allow it to be reached faster. There are two main types of catalyst: **heterogeneous** and **homogeneous**.

Heterogeneous Catalysts

Heterogeneous catalysts are catalysts that are in a **different phase** or **state** to the species in the reaction. An example of this is the **Haber Process**, where a **solid iron catalyst** is used to speed up the reaction between hydrogen and nitrogen gases. Similarly, a **nickel catalyst** is used in the **hydrogenation of alkenes**. Heterogeneous catalysts use the process of **adsorption**:

Adsorption

A **solid catalyst** works by **adsorbing molecules** onto an **active site** on the surface of the catalyst. These active sites **increase the proximity** of molecules and **weaken the covalent bonds** in the molecules so that reactions occur more easily and **rate of reaction is increased**.

OOOO PMTEducation

 \bullet www.pmt.education

The **strength of adsorption** depends on the **type of catalyst** and can affect how much it affects the rate of the reaction. **Iron**, **cobalt** and **nickel** make the best catalysts as they are **relatively affordable** and **increase the rate of reaction** the most out of all the period 4 transition metals.

Catalyst Poisoning

Heterogeneous catalysts can be **poisoned by impurities** which **block** the **active sites** and **prevent adsorption**. Therefore the bonds of the molecules remain strong and the catalyst has **minimal effect** on the rate of the reaction.

Reaction impurities can lead to an **increase in chemical production costs** in industry as the catalyst has to be **replaced** or **cleaned regularly**.

Sulfur impurities poison the solid iron catalyst used in the **Haber Process**. The sulfur impurities occur from the **natural gas** which is used to obtain methane - this methane is then used to produce hydrogen.

Homogeneous Catalysts

Homogeneous catalysts are catalysts that are in the **same phase** to the species in the reaction. They work by reacting with the reactants to form **an intermediate species**, which will then react to form the products, and **reform** the catalyst.

An example of a homogeneous catalyst being used is the reaction between **S2O⁸ 2-** ions and **I** ions where **Fe2+** is used as a **catalyst**. Without a catalyst, these **negative ions** would naturally **repel** each other and never react.

OOOO PMTEducation

 \bullet www.pmt.education

Example:

Overall:	$S_2O_8^{2-}$	\longrightarrow	I_2	$2SO_4^{2-}$																																		
International																																						
International	$S_2O_8^{2-}$	$2Fe^{2+}$	$2Fe^{3+}$	$2Fe^{3+}$	$2Fe^{2+}$																																	
2Fe ³⁺	$2Fe^{3+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+}$	$2Fe^{2+$

By forming a **reactive intermediate**, the reaction **pathway is changed** as the **enthalpy change** for the formation of the intermediate is much **lower** than the original reaction. The **activation energy is lower** so the reaction is more feasible.

Transition metals make good **homogeneous catalysts** due to their **variable oxidation states**. **Electrons are transferred** to produce a reactive intermediate and speed up the reaction rate.

The **Contact Process** uses a **vanadium oxide** catalyst to speed up the conversion of sulfur dioxide to sulfur trioxide.

Example:

Vanadium is reduced from **+5 to +4** and is then reformed in its original oxidation state, showing it has acted as a catalyst for the reaction.

Manganese(IV) oxide is another transition metal used as a **homogeneous catalyst**. It is used as a catalyst for the **decomposition of hydrogen peroxide**.

Reactions of Aqueous Ions

Solutions of transition metal ions **react as acids** with aqueous OH- ions via a **neutralisation** reaction to form a **salt and water**. These reactions **hydrolyse** the metal ions to form **coloured precipitates**. The **salt precipitates** formed all have a **colour** allowing them to be **identified**.

> $[Fe(H₂O)₆]²⁺ + 2OH^- \rightarrow [Fe(H₂O)₄(OH)₂] + 2H₂O$ The green solution forms a green precipitate.

> $[Fe(H₂O)₆]³⁺ + 3OH^- \rightarrow [Fe(H₂O)₃(OH)₃] + 3H₂O$ The yellow solution forms a brown precipitate.

> $[Cr(H₂O)₆]³⁺ + 3OH^- \rightarrow [Cr(H₂O)₃(OH)₃] + 3H₂O$ The violet-blue solution forms a violet-blue precipitate.

 $[Cu(H₂O)₆]²⁺ + 2OH^- \rightarrow [Cu(H₂O)₄(OH)₂] + 2H₂O$ The blue solution forms a blue precipitate.

It is easiest to remember the formulas of the precipitates by remembering that the number of OH- substituted is the same as the value of the charge on the initial ion.

